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The influence of phylogenetic trees on correlations in mutation pro-
cesses is investigated. Generally, correlations decay exponentially
with the generation number. We find that two distinct regimes
of behavior exist. For mutation rates smaller than a critical rate,
the underlying tree morphology is almost irrelevant, while mutation
rates higher than this critical rate lead to strong tree-dependent cor-
relations. An identical critical behavior underlies all multiple point
correlations. This behavior generally applies to branching processes

undergoing mutation.



Goals

e Time evolution of inter-sequence correlations.

e Influence of Phylogeny (family tree) on sequence evolution.

The Mutation-Duplication Model

e Sequences: Simplest possible: alphabet size=2, length=1.

The numeric values o; = £1 are attached to the two states.

e Random mutation process: Poisson Statistics: ¢ — —o

(mutation event) with p the mutation probability.

e Binary tree phylogeny: Every parent has two children.

Fig. 1. The mutation process on a two-generation tree. The multiplicative

variable 7 (0; = 7,05, j parent of i) indicates whether a mutation occurred.



Law for Correlations
e Pair correlations (0;0;). Example (Fig. 1):
(o304) = (oomimogniTs) = (oerimmy) =) (myry) =U%) (7)?
(0305) = (0306) = (1)*  (following similar calculation)
(*) two-state symmetry: o =72 =1
(**) identical, independent random variables: (1;7;) = (7;)(7;)

e In general, let d; ; be the genetic distance, the minimal num-

ber of bonds connecting the nodes 4, j (ds4 =2, d35 = 4)

(03} = ()%

e Multiple point correlations follow a similar rule,
(oi0001) = <7‘>di,j”€al
e d; j .1 the generalized 4-point genetic distance, the minimal num-
ber of nodes connecting the nodes ¢, 7, k, (:
dijkg =min{d; j +dps, dip+dj, dig+dji}-

e Generally, n-point correlations = (7)%. The n-point genetic

distance d,, =minimal number of bonds connecting the n-nodes.



Average Correlations

e Average pair correlation at k generation
Ga(k) = ((0i0)))
Average taken over all (i) realizations (ii) ¢, j from kth generation.

e For example, at second generation (Fig. 1): G5(2) = [(o304) +
(0305)+(0306)] /3 = ((T)?+2(7)*) /3. In general, the geometric

series Ga(k) = ((1)% + 2(7)t + - -« + 2F71(r)2R) /(2 — 1), or

) e -1
W21 k1

e Two asymptotic behaviors marked by p. = % (1 — %)

() p < pe;
Gz(k) ~

27K p>op.

e Low mutation rates: Phylogeny is marginally relevant. Ex-
ponential decay of correlations has same constant as for trivial

star phylogeny. Only overall prefactor (> 1) is enhanced.

e High mutation rates: Phylogeny generates strong correla-
tions. Exponential decay constant is enhanced. It depends on

tree morphology rather than the mutation probability.



The Star Phylogeny

e The trivial star phylogeny serves as a reference.
o All genetic distances are equal d; ; = 2k.

e Factorizing (mean-field) correlations

G3(k) = [G1(R)) = (r)*"

e Compare tree with star in k& — oo limit

D)

2 (k) const. p < pg;

—

(k) oo p>ope
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O

Fig. 2. The path connecting two nodes always contains the tree root.



Higher Order Correlations

e Average n-node correlation at kth generation

Gn(k) = ((0iy0iy+ - i)

k

e Obtain from G, (k) = F,(k)/(’) using the sums

Fu(k) = D (0010~ i)

1<iy <ig<---<ip<2k

e Corresponding recursion relations reflect the binary tree

Fuk) = Y Fpn(k —1)FEy m(k — 1) BBy

m=0
e Boundary conditions F,,(0) = 8,0 + 8,1

e Tree root counted for odd order correlators, as reflected by B,

1 n=2r
B, =
(Ty n=2r+1.

e Analysis in the asymptotic (k — oo limit) is possible using

generating functions techniques.



Asymptotic Behavior

Low mutation rates p < p.: All correlations behave simi-
larly as limy_.o[Gp(k)]Y™ = (7). For the star case G*(k) =
(7)"* and thus, correlations are only marginally enhanced due

to phylogeny as G,,(k)/G: (k) = A, > 1.

Gn(k) ~ A, (T)"™

High mutation rates p > p.: Phylogeny generates signif-
icant correlations. Odd correlations are enslaved to even ones
Gory1(k) = (2r + 1){(7)* Gy, (k). Correlations decay slower and
the decay rate depends on tree morphology only. Ratio with

trivial star phylogeny diverges G, (k)/G}(k) — oo for n > 1.

Ggr(k) ~ CTQ_Tk

Nature of transition: can be understood heuristically. Near
relatives are strongly correlated but exponentially rare. Far rel-
atives are abundant but exponentially weak. When p < p. far

relatives dominate, and when p > p. near relatives dominate.

Same critical point underlies all correlators




Generalizations

Stochastic tree morphologies: Only relevant parameter is
the average number of children (k). Critical point shifts, role of

phylogeny diminishes for larger trees

10-8)

Continuous time formulation: Mutation occurs with rate
v, birth with rate v. In terms of the dimensionless mutation

rate 6 = /v the transition occurs at 6. = 1/4.

Larger alphabets: consider n-state “clock” model o =
exp(i2mj/n) with j = 0,1,...,n with the rotation mutation
o — oexp(i2m/n). Critical point shifts, role of phylogeny di-
minishes with increasing the number of states

1
0, = :
2(1 — cos 27)

n

Nature of transition remains the same




Conclusions

e Correlations decay exponentially with time, genetic distance.

e Phylogeny matters only when the mutation rates is high.

e Transition is critical in nature: all correlations behave similarly.
e Results apply to a large class of mutation/duplication processes.

e Role of phylogeny decreases as alphabet size, tree size increases.
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